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Transient thermal contact resistance
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Abstract—The short-time asymptotic solution for the heat flow between two similar bodies placed in
contact has recently been given by Barber. The long-time asymptotic solution is given here : it has exactly

the same form as the short-time asymptote
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but, in general, has different coefficients.

INTRODUCTION

BarBER [1] has recently shown that when two semi-
infinite solids of the same material at different,
uniform, temperatures are placed in contact, the heat
flow between them at small times is given by
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where T, is half the initial temperature difference, K
and « the thermal conductivity and diffusivity, respec-
tively, and 4 and S the area and periphery of the
contact area.

Regarding this as the flow from an area 4 main-
tained at 7', into a semi-infinite solid initially at zero,
we see that a related heat flow problem is the flow
from a hemispherical surface A4 to the solid, for which
the temperature distribution is (see Section 9.10 in
Carslaw and Jaeger [2])
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where a is the radius of the hemisphere. Heasley [3]
has used this model as an approximation to the flow
from a circular contact area, following its use by Holm
[4] to estimate electrical contact resistance.

From equation (2) the heat flow from the hemi-
sphere is
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in Barber’s terms: that is, for this case the short-
time transient solution (differing by a factor 0.5 from
Barber’s)t is exact at all times.

1 The 0.5 need cause no dismay, since Barber’s arguments
are directed at a plane contact area.

Now, it seems clear that for any case of flow into a
semi-infinite solid the flow rate will ultimately behave
as
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(the na is inserted for later convenience). That is, it
has the same form as the short-time solution, although
in general the coefficients will be different. For many
contact geometries we know the value of C, (if R, is
the steady-state thermal contact resistance then
Co = (KRy)™ "), and it is certainly not directly related
to the periphery of the contact, though it often varies
in a similar way. For example, for an elliptical contact
area we have
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(K(e) and E(e) are complete elliptic integrals). This
falls slowly from 4/ for a circle to 1.1 when ¢? = 0.9,
but then quickly falls to zero as ¢ — 1. The cor-
responding values of C, are not known, though the
value for a circular contact may be deduced from the
Iong-time temperature distribution found by Nor-
minton and Blackwell [5] to be C, = 8b/n. We show
below that quite generally, there is a simple relation
between C, and the steady thermal contact con-
ductance C,.

THEOREM

It may easily be verified that

F r?
= 5K OXP (~ @) (6)
gives the temperature due to a point source of varying

intensity F/t'/? on the surface of a semi-infinite solid.
When 4o > r?, this reduces to
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a radius of hemispherical contact, semi-
major axis of ellipse

A area of contact

h radius of circular contact, semi-minor axis
of ellipse

C, steady-state thermal conductance

C, coeflicient : see equation (5)

e eccentricity of elliptical contact

F  coefficient of variable heat input rate, F/¢"*

K thermal conductivity

heat input rate/unit area

Q  heat flow rate

Q, constant heat flow rate

NOMENCLATURE

r radial distance

R, steady-state thermal resistance

RY¥ R,K

S periphery of contact area

t time

T, (constant) temperature of contact
arca

T(#) (variable) temperature at contact.

Greck symbols
o thermal diffusivity
0 temperature
4, ¢ unknown multipliers.
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and the leading term is precisely the result

q
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giving the steady temperature due to a constant heat
source ¢: that is, the same equation is valid with
q = const. or with ¢ = Fjt'’2.

It follows that we can immediately write down the
leading term in the transient solution for any dis-
tribution of surface heating varying as t~'? from the
corresponding steady-state solution.

CIRCULAR CONTACT

For a circular contact of radius b, it is well known
that a constant heat input ¢ = go(1 —r’/b%)~ "? gives
a uniform temperature T, = Q,/4bK over r < b,
where Q, is the total rate of heat input 2mg.b’. It
has been shown [6] that the approach to this steady
temperature is given by

r-T=20— L Louy @
o
independent of position or of the details of the source.

From the theorem above, we know that a time-
varying heat input ug,(1—r?/b>)~ "3t "? will also
give a uniform temperature over r < b, equal to

Thus, a heat input Qy(1+ pw/t"?) will give
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t Differentiating Norminton and Blackwell's temperature
distribution leads to this result, and to a zero coefficient for
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the next (s~ °) term.

which will be constant (to O(r=*3)) if we take
1= 2b/(m/(nx)). Reversing the argument, we deduce
that a constant surface temperature T, gives a heat

flow
2h
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ie. Cy=4b=(2/m)Sand C, = 8b*/n = (8/n")A.

We note that both coefficients in the long-time solu-
tion are close to the values in Barber’s short-term
solution.

Figure | compares the two asymptotic expansions,
valid for long times and short times, respectively.
Clearly either asymptote gives a fair approximation
over the whole range, though each gives a 25% error
if used at the ‘wrong’ end. Figure | also shows the
equation representing the numerical solution by
Schneider et al. [7], i.e.

4hKT 4
7QJ = (.43 tanh [0.37 In <°">] +0.57.  (10)
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Although this agrees well with the asymptotic solu-
tions in the middle of the range, it is clearly in conflict
ast—0ort— .

CONTACT OF ANY SHAPE

It is easy to extend the above analysis to a contact
of arbitrary shape. We define the (semi-non-dimen-
sional) steady-state resistance R% by KT, = Q,R¥ and
assume that R} is known. Then a steady heat input
Q, will give
QRY Q. I

_ Yo, )

T(t) = e o
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using equation (9) again; and a heat input
1 Qo/y/(nar) distributed in the same way as Q, will
give a temperature u'Q,R¥/(K./(nar)). Then taking
WRE =12 we deduce that for a constant tem-
perature T, the heat flow will be given by
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o 1 1 O~ . where R¥/K is the steady-state thermal resistance. The
KT, = Rif)" + 2nR¥? \/(TCOCI) +0@™7)  (ah time constants may be close to the values in the short-
time solution
i.e. quite generally
C, = 1/(2nR}?) = Ci/2n (12) SUNEY TR
' 0T e KT, J(mar)

For the hemispherical ‘contact’ we have R§ = 1/2na
and note with satisfactiont that C, becomes 2ra’ as
in equation (3a). For an elliptical contact we have
R% = K(e)/2naso that C, = 2na*/(K(e))?; and we see
that C, deviates considerably from the short-term
value A4 as soon as the contact becomes appreciably
elliptical.

WARNING

Nothing in the above argument appears to rely on
there being only a single contact area (except perhaps
the condition 4ar > r?). Yet it would seem that when
contact occurs at two equal, well-separated individual
contacts, the values of both C, and C, are doubled,
and C, # C3/2n. The reader will no doubt be able to
resolve this paradox; the author’s speculations are
given in the Appendix.

CONCLUSION

The transient heat flow between two solids at long
contact times becomes

o _t 1 1
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t And some surprise, since our proof is for a plane heat
source.

but may deviate considerably from them.
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APPENDIX. TWO EQUAL, WELL-SEPARATED
CONTACT AREAS

It would appear that two well-separated contact areas
should act independently, so that if C, is the conductance of
an individual area, then for the two

Q G
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whereas the theory of the paper gives

2
A,Q = 2("0 + -,%qﬂi .
KT, 7/ (o)
One may argue that if 4 is a characteristic dimension of the
individual contact, while d is their separation, then equation
(A1) holds for b* «dat« d? and equation (A2) for
4as » d*. However, this fails to explain why the co-operation
of the two contacts increases the heat flow: surely the heat
flow should be reduced?
in fact we know that the steady-state heat flow will be
reduced below 2C, because of the ‘mutual resistance’ of the
two contacts (see ref. [8]): the temperature at one contact is
raised by the heat flow through the second, and this reduces
the flow through the first. To be definite, consider two cir-
cular contacts of radius & so that C, = 4b: then we have
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where the heat flows @, and @, through the two contacts

are each 1Q,. Then
ET“ _ 1/ 1 1
0 " 2\a T 7

and equation {A2) should be corrected to

Q2% | 2G
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The change compared with equation (Al) is
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and, provided nas > d?, this is a decrease as expected.

RESISTANCE THERMIQUE VARIABLE DE CONTACT

Résumé—La solution asymptotique de court temps pour le transfert de chaleur entre deux corps semblables
placés en contact a été récemment étudiée par Barber. On donne ici la solution asymptotique a long terme :
elle a exactement la mé&me forme que celle 4 court temps
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mais, en général, avec des coefficients différents.

KONTAKTWIDERSTAND UNTER INSTATIONAREN BEDINGUNGEN

Zusammenfassung—Die asymptotische Kurzzeitlésung fiir den Wirmestrom an der Kontaktfliche zwis-
chen zwei dhnlichen Kérpern wurde vor kurzem von Barber vorgestellt. Hier wird nun die asymptotische
Langzeitldsung beschrieben, welche exakt die gleiche Form wie die Kurzzeitldsung besitzt:
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aber im allgemeinen andere Koeffizienten aufweist.

TETIJTOBOE KOHTAKTHOE COITPOTUBJIEHNE B HECTAIITHOHAPHOM CJIVUAE

Asmoraims—Henasro bapbepom 6uu10 nmosiyueHO acCHMOTOTHYECKOE PELICHHE IUIX TEIIOBOTO HOTOKA
MEXIY ABYMS HACHTHYHBIMH TElaMH, OPHBCOCHHBIME B KOHTAakT, HPH Majbix BpeMeHax. B zanuol
CTaThe NPHBOANTCHA ACHMITOTHYECKOE PElliCHHE A8 GONBLIMX BPEMEH, KOTOPOE HMEET TOT X€ BHI, YTO

¥ ACHMIITOTA ANA MAJIBIX BPEMECH
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HO C Apyramu KospduuneHTaMH.



