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Abstract-The short-time asymptotic solution for the heat flow between two similar bodies placed in 
contact has recently been given by Barber. The long-time asymptotic solution is given here: it has exactly 
the same form as the short-time asymptote 

but, in general, has different coefficients. 

INTRODUCTtON 

BARBER fl] has recently shown that when two semi- 
infinite solids of the same material at different, 
uniform, temperatures are placed in contact, the heat 
flow between them at small times is given by 

where To is half the initial temperature difference, K 

and c1 the thermal conductivity and diffusivity, respec- 
tively, and A and S the area and periphery of the 
contact area. 

Regarding this as the flow from an area A main- 
tained at r, into a semi-infinite solid initially at zero, 
we see that a related heat flow problem is the flow 
from a hemispherical surface A to the solid, for which 
the temperature distribution is (see Section 9.10 in 
Carslaw and Jaeger [2]) 

0 = T, ” erfc z 
r 2 J(4 

where a is the radius of the hemisphere. Heasley [3] 
has used this model as an approximation to the Aow 
from a circular contact area, following its use by Hoim 
[4] to estimate electrical contact resistance. 

From equation (2) the heat flow from the hemi- 
sphere is 

in Barber’s terms: that is, for this case the short- 
time transient solution (differing by a factor 0.5 from 
Barber’s)? is exact at all times. 

7 The 0.5 need cause no dismay. since Barber’s arguments 
are directed at a plane contact area. 

Now, it seems clear that for any case of flow into a 
semi-infinite solid the flow rate will ultimately behave 
as 

(the ~a is inserted for later convenience). That is, it 
has the same form as the short-time solution, although 
in general the coefficients will be different. For many 
contact geometries we know the value of Co (if R,, is 
the steady-state thermal contact resistance then 
C, = (IU?,)- ‘), and it is certainly not directly related 
to the periphery of the contact, though it often varies 
in a similar way. For example, for an elliptical contact 
area we have 

conductance C, =-- 
semi-periphery K(c;I?(e) where ” = I -““’ 

(5) 

(K(e) and E(e) are complete elliptic integrals). This 
falls slowly from 4/n for a circle to 1.1 when e2 = 0.9, 
but then quickly falls to zero as e + 1. The cor- 
responding values of C, are not known, though the 
value for a circular contact may be deduced from the 
long-time temperature distribution found by Nor- 
minton and Blackwell [S] to be C, = 8!1~/z. We show 
below that quite generally, there is a simple relation 
between C, and the steady thermal contact con- 
ductance C,. 

THEOREM 

It may easily be verified that 

F 
0 = ~~~~i~ exp 

r2 ( > -- 
4at (6) 

gives the temperature due to a point source of varying 
intensity F/t”’ on the surface of a semi-infinite solid. 

When 4crt >> r’, this reduces to 
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NOMENCLATURE 

radius of hemispherical contact, semi- , radial distance 
major axis of ellipse Ro steady-state thermal resistance 
area of contact RX &,K 
radius of circular contact, semi-minor axis S periphery of contact area 
of ellipse t time 
steady-state thermal conductance T,, (constant) temperature of contact 
coefficient : see equation (5) area 
eccentricity of elliptical contact r(t) (variable) temperature at contact. 
coefficient of variable heat input rate. F/t’ ’ 

thermal conductivity Greek symbols 
q, q0 heat input rate/unit area E thermal diffusivity 
Q heat flow rate 0 temperature 

Q” constant heat flow rate p, p’ unknown multipliers. 

O= 
F 

27iKrt 
+O(t ?“) (7) 

which will be constant (to O(t--‘,‘)) if we take 
AL = 26/(zJ(nr)). Reversing the argument, we deduce 
that a constant surface temperature r, gives a heat 
flow 

and the leading term is precisely the result 

giving the steady temperature due to a constant heat 
source q: that is, the same equation is valid with 
q = const. or with q = Fit”. 

It follows that rre can immediately write down the 

leading term in the transient solution ,ji)r any dis- 

tribution of surjke heating varying as tm “’ ,from the 

corresponding steady-state solution. 

CIRCULAR CONTACT 

For a circular contact of radius b, it is well known 
that a constant heat input q = q,,(l -r*/b*)- Iv2 gives 
a uniform temperature T,, = QO/4hK over r < b, 

where Q0 is the total rate of heat input 2nq,b’. It 
has been shown [6] that the approach to this steady 
temperature is given by 

T,,_T(t) =_%‘. +qt 3.2) 

27-u~ J(m) 
(8) 

independent of position or of the details of the source. 
From the theorem above, we know that a time- 

varying heat input pq,(l -r’/b’)m”‘tm “’ will also 

give a uniform temperature over r < b, equal to 

T(t) = ‘;g.;q iO(t 3’2) 

Thus. a heat input QO( 1 +p/t”‘) will give 

t Differentiating Norminton and Blackwell’s temperature 
distribution leads to this result, and to a zero coefficient for 
the next (t-’ ‘) term. 

i.e. Co = 46 = (2,‘~)s and C, = 8b’/n = (8p’)A. 

We note that both coefficients in the long-time solu- 
tion are close to the values in Barber’s short-term 
solution. 

Figure 1 compares the two asymptotic expansions, 
valid for long times and short times, respectively. 
Clearly either asymptote gives a fair approximation 

over the whole range, though each gives a 25% error 
if used at the ‘wrong’ end. Figure 1 also shows the 
equation representing the numerical solution by 

Schneider et al. [7], i.e. 

4bKT, 
~~~=0.43tanh[O.37In(~~~]+O.57. (10) 

Although this agrees well with the asymptotic solu- 
tions in the middle of the range, it is clearly in conflict 
ast+Oort-tx. 

CONTACT OF ANY SHAPE 

It is easy to extend the above analysis to a contact 
of arbitrary shape. We define the (semi-non-dimen- 
sional) steady-state resistance RX by KT,, = Q(, Rt and 
assume that RX is known. Then a steady heat input 
Q,, will give 

using equation (9) again; and a heat input 
p’Q,JJ(nat) distributed in the same way as Q0 will 
give a temperature p’Q,R~/(K~(xcct)). Then taking 
p’RX = 1/27r we deduce that for a constant tem- 
perature Z’, the heat flow will be given by 
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asymptote 

Numerical solution 

FIG. 1. 

Q 1 
-= i+_. 
KT, R,* 2nRZ2 &c) 

~ +O(t-“) (11) 

i.e. quite generally 

C, = 1/(27tRz2) = C;/2n. (12) 

For the hemispherical ‘contact’ we have Rt = 1/2na 
and note with satisfactiont that C, becomes 27ca2 as 
in equation (3a). For an elliptical contact we have 

Rfj = K(e)/2na so that C, = 27~a~/(K(e))~ ; and we see 
that C, deviates considerably from the short-term 
value A as soon as the contact becomes appreciably 
elliptical. 

WARNING 

Nothing in the above argument appears to rely on 
there being only a single contact area (except perhaps 
the condition 4at >> r’). Yet it would seem that when 
contact occurs at two equal, well-separated individual 

contacts, the values of both CO and C, are doubled, 
and C, # C,$2n. The reader will no doubt be able to 
resolve this paradox; the author’s speculations are 
given in the Appendix. 

CONCLUSION 

The transient heat flow between two solids at long 
contact times becomes 

t And some surprise. since our proof is for a plane heat 
source. 

where R$K is the steady-state thermal resistance. The 
time constants may be close to the values in the short- 
time solution 

Q 
KTo 

but may deviate considerably from them. 
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APPENDIX. TWO EQUAL, WELL-SEPARATED 
CONTACT AREAS 

It would appear that two well-separated contact areas 
should act independently, so that if Co is the conductance of 
an individual area, then for the two 
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whereas the theory of the paper gives 

(342) 

One may argue that if h is a characteristic dimension of the 
individual contact, while dis their separation, then equation 
(Al) holds for h’ cc 4rt << d’ and equation (AZ) for 
4at >> d ‘. However, this fails to explain why the co-operation 
of the two contacts increases the heat Sow : surely the heat 
flow should be reduced? 

In fact we know that the steady-state heat flow will be 
reduced below 2C0 because of the ‘mutual resistance’ of the 
two contacts (see ref. [8]) : the temperature at one contact is 
raised by the heat flow through the second, and this reduces 
the flow through the first. To be definite, consider two cir- 
cular contacts of radius b so that Cn = 4h : then we have 

where the heat flows QI and QZ through the two contacts 
are each :Qo. Then 

and equation (A2) should be corrected to 

(A3) 

The change compared with equation (Al) is 

and, provided nat > d’, this is a decrease as expected 

RESISTANCE TH~R~IQUE VARIABLE DE CONTACT 

R&um&-La solution asymptotique de court temps pour ie transfer? de chaleur entre deux corps ~mblables 
places en contact a it.5 n?cemment ttudiee par Barber. On donne ici la solution asymptotique a long terme : 
elle a exactement la mEme forme que celle a court temps 

mais, en general, avec des coefficients differents. 

KONTAKTWIDERSTAND UNTER INSTATLONAREN BEDINGUNGEN 

Z~ammenfa~un~Die asymptotische Kurzzeitliisung fur den W~~es~orn an der Kontaktflgche zwis- 
then zwei ~hnlichen Korpern wurde vor kurzem von Barber vorgestelit. Hier wird nun die asymptotische 
LangzeitlGsung beschrie~n, welche exakt die gleiche Form wie die Kurzzeitiiisung besittt: 

aber im allgemeinen andere Koeffizienten aufweist. 

TEI’IJIOBOE KOHTAKTHOECOI’IPOTkiBJIEHHE B HECTAUMOHAPHOM CJIY9AE 

.kioTa~He~aBHo Eap6epoM B~.no nonyreH0 aCAMnTOTASeCKOe pemeHBe ILax TenJIOBOrO nOTOKa 
Me~cny nsyMs Wnen’rB’IHbrMH TeJraMn, npB3eneHHbrMB B ROHTaXT, npU MaJlMX BpeMeHaX. B &mHOii 
CTaThe lIpI%BOnBTCB aCHMnTOTBYeCKOe penB%nie aRII 6OnbmBX BPeMeH, KOTOPCM HMeeT TOT me BBA, YTO 
B aCHMnTOTa &TX MaJrMX BPeMeH 

HO C ~PYl’SfMH KO%#BiUBeBTaMN. 


